model.py
# 1) Data Transformer 
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.5,), (0.5,))])

# 2) Create Train Dataset
trainset = torchvision.datasets.MNIST(root='./data', train=True,
                                      download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

# 3) Create Test Dataset
testset = torchvision.datasets.MNIST(root='./data', train=False,
                                     download=True, transform=transform)
testloader = DataLoader(testset, batch_size=64, shuffle=False)