pdp.py
import numpy as np
import pandas as pd
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor

# Create a dummy dataset (1000 samples, 5 features)
X, y = make_regression(n_samples=1000, n_features=5, noise=0.1)

# Train a Random Forest model
model = RandomForestRegressor(n_estimators=100)
model.fit(X, y)